Bioscience, Biotechnology, and Biochemistry
Online ISSN : 1347-6947
Print ISSN : 0916-8451

This article has now been updated. Please use the final version.

An Active Part of Artemisia sacrorum Ledeb. Suppresses Gluconeogenesis through AMPK Mediated GSK3β and CREB Phosphorylation in Human HepG2 Cells
Hai-Dan YUANGuang-Chun PIAO
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: 100881

Details
Abstract
In this study, we investigated the effects of a petroleum ether fraction of Artemisia sacrorum Ledeb. (Compositae) (PEASL) on glucose production through AMP-activated protein kinase (AMPK) activation in human HepG2 cells. PEASL significantly inhibited glucose production in a concentration-dependent manner, and this effect was reversed in the presence of compound C, a selective AMPK inhibitor. PEASL markedly induced the phosphorylation of AMPK and downstream acetyl-CoA carboxylase (ACC) in a time- and concentration-dependent manner. In addition, it markedly increased the phosphorylations of glycogen synthase kinase 3β (GSK3β) in a concentration-dependent manner. In contrast, cAMP reponse element binding protein (CREB), a key transcription factor for gluconeogenic enzyme phosphorylation, decreased in a concentration-dependent manner. PEASL downregulated the gluconeogenesis gene expression of peroxisome proliferation activated receptor-γ coactivator-1α (PGC-1α), phosphoenolpyruvate carboxykinase (PEPCK), and glucose-6-phosphatase (G6Pase) in a concentration-dependent manner. In addition, the gene expression of orphan nuclear receptor small heterodimer partner (SHP) increased, also in a concentration-dependent manner. These effects were also abolished by pretreatment with compound C, an AMPK inhibitor. This indicates that PEASL inhibited glucose production via the AMPK-GSK-CREB pathway in HepG2 cells, and these effects appeared to be capable of revealing anti-diabetic mechanism of PEASL in HepG2 cells.
Content from these authors

This article cannot obtain the latest cited-by information.

© 2011 by Japan Society for Bioscience, Biotechnology, and Agrochemistry
feedback
Top