Agricultural and Biological Chemistry
Online ISSN : 1881-1280
Print ISSN : 0002-1369
ISSN-L : 0002-1369
Chemical Modification of Tryptophan Residues in Abrin-a
Hideki OHBANobuyuki YAMASAKIGunki FUNATSU
著者情報
ジャーナル フリー

1991 年 55 巻 6 号 p. 1579-1585

詳細
抄録

Chemical modification of tryptophan residues in abrin-a with N-bromosuccinimide (NBS) was studied with regard to saccharide-binding. The number of tryptophan residues available for NBS oxidation increased with lowering pH, and 11 out of the 13 tryptophan residues in abrin-a were eventually modified with NBS at pH 4.0, while 6 tryptophan residues were modified at pH 6.0 in the absence of specific saccharides. Modification of tryptophan residues at pH 6.0 greatly decreased the saccharide-binding ability of abrin-a, and only 2% of the hemagglutinating activity was retained after modification of 3 residues/mol. When the modification was done in the presence of lactose or galactose, 1 out of 3 residues/mol remained unmodified with a retention of a fairly high hemagglutinating activity. However, GalNAc did not show such a protective effect. NBS-oxidation led to a great loss of the fluorescence of abrin-a, and after modification of 3 tryptophan residues/mol, the fluorescence intensity at 345 nm was only 38% of that of the unmodified abrin-a. The binding of lactose to abrin-a altered the environment of the tryptophan residue at the saccharide-binding site of abrin-a, leading to a blue shift of the fluorescence spectrum. The ability to generate such fluorescence spectroscopic changes induced by lactose-binding was retained in the derivative in which 2 tryptophan residues/mol were oxidized in the presence of lactose, but not in the derivative in which 3 tryptophan residues/mol were oxidized in the absence of lactose. Importance of the tryptophan residue(s) in the saccharide-binding of abrin-a is suggested.

著者関連情報

この記事は最新の被引用情報を取得できません。

© Japan Society for Bioscience, Biotechnology, and Agrochemistry
前の記事 次の記事
feedback
Top