Author's Organization:Department of Biotechnology, Tottori University Department of Biotechnology, Tottori University Department of Biotechnology, Tottori University Frontier Technology Research Institute, Tokyo Gas Co. Department of Biotechnology, Tottori University
[13C]Formaldehyde was selectively incorporated into the C-1 position of D-fructose 6-phosphate by condensation with D-ribulose 5-phosphate catalyzed by a partially purified enzyme system for formaldehyde fixation in Methylomonas aminofaciens 77a. Much of the [1-13C]D-fructose 6-phosphate produced in this reaction was converted to [1-13C]D-glucose 6-phosphate by the addition of glucose-6-phosphate isomerase. A fed-batch reaction with periodic additions of the substrates afforded 56.2g/liter D-glucose 6-phosphate and 26.8g/liter D-fructose 6-phosphate. When [13C]methanol was used as the C1-donor, the yield of [1-13C]D-glucose 6-phosphate was high when alcohol oxidase was added. The optimum conditions for sugar phosphate production in the fed-batch reaction gave 45.6g/liter [1-13C]D-glucose 6-phosphate and 16.4g/liter [1-13C]D-fructose 6-phosphate in 165min. The molar yield of the total sugar phosphates to methanol added was 95%. The addition of H2O2 and catalase to the reaction system supplied molecular oxygen for methanol oxidation to formaldehyde by alcohol oxidase.
References (15)
Related articles (0)
Figures (0)
Content from these authors
Supplementary material (0)
Result List ()
Cited by
This article cannot obtain the latest cited-by information.