Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Enhanced Adhesion of Oxidized Mouse Polymorphonuclear Leukocytes to Macrophages by a Cell-Surface Sugar-Dependent Mechanism
Masatoshi BEPPUNoriaki YOKOYAMAMasatoshi MOTOHASHIKiyomi KIKUGAWA
Author information
JOURNAL FREE ACCESS

2001 Volume 24 Issue 1 Pages 19-26

Details
Abstract
Mouse thioglycollate-induced peritoneal macrophages effectively, in the absence of serum, recognized mouse polymorphonuclear leukocytes (PMNs) mildly oxidized with diamide, superoxide (hypoxanthine/xanthine oxidase) or t-butylhydroperoxide, or modified with N-ethylmaleimide (NEM). The recognition reached a maximum when PMNs were treated with each of the reagents at relatively low concentrations, and the recognition was decreased on treatment with reagents at higher concentrations. Glutathione depletion in the diamide-oxidized PMNs may cause enhanced adhesion to macrophages. Sialylated sugar chains attached to a peptide chain in glycophorin A and sialylated poly-N-acetyllactosaminyl sugar chains in lactoferrin and band 3 glycoprotein effectively inhibited the increased adhesion of the diamide-oxidized PMNs. Enzymatic removal of sialyl residues and the degradation of poly-N-acetyllactosaminyl sugar chains by pretreatment of PMNs with neuraminidase or endo-β-galactosidase, respectively, lost their increasing ability for macrophage adhesion after oxidation with diamide, superoxide or t-butylhydroperoxide. Clustered sialylated poly-N-acetyllactosaminyl sugar chains on the cell surface may be involved in the increased adhesion of the oxidized PMNs to macrophages.
Content from these authors
© 2001 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top