Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Notes
Ca2+-Dependent Caspase Activation by Gallic Acid Derivatives
Kazuto ISUZUGAWAMakoto INOUEYukio OGIHARA
著者情報
ジャーナル フリー

2001 年 24 巻 7 号 p. 844-847

詳細
抄録

Gallic acid (GA) derivatives, 3,4-methylenedioxyphenyl 3,4,5-trihydroxybenzoate (GD-1) and S-(3,4-methylenedioxyphenyl)3,4,5-trihydroxythiobenzoate (GD-3), were previously reported to induce apoptosis in tumor cells with IC50s of 14.5 μM and 3.9 μM, respectively. To elucidate the mechanism by which these gallic acid derivatives (GDs) induce apoptosis, we studied whether GD-1 and GD-3 can activate caspases. When promyelocytic leukemia HL-60RG cells were treated with GD-1 and GD-3, poly(ADP-ribose)polymerase (PARP), a substrate of caspase-3, was cleaved into 85 kDa of degradative product with increasing incubation time. GA also activated PARP cleavage, which was inhibited by catalase, N-acetyl-L-cysteine (NAC), and intracellular Ca2+ chelator 1,2-bis(2-aminophenoxyethane)-N, N, N, N'-tetraacetic acid tetrakis (acetoxymethyl ester) (BAPTA-AM), in addition to a caspase inhibitor, Z-VAD-FMK. Its inhibitory pattern was identical with that of hypoxanthine/xanthine oxidase. On the other hand, GD-1 and GD-3-induced PARP cleavage was not suppressed by catalase or NAC, but by BAPTA-AM. This suggested that the GD-elicited signaling pathway is different from GA’s. Taken together, GDs activated caspase-3 following intracellular Ca2+ elevation independent of reactive oxygen species. Thus, it became evident that the signaling pathway leading to apoptosis was regulated by GDs in a different manner from GA.

著者関連情報
© 2001 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top