Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Phorbol Myristate Acetate Stimulates Degradation of a Structural Analogue of Platelet-Activating Factor to a Neutral Lipid in Human Leukemic K562 Cells: Relevance to the Release of Lipids
Toshihiko TsutsumiAkira TokumuraMasaya YamaguchiShikifumi KitazawaYusuke Tanigawara
Author information
JOURNAL FREE ACCESS

2004 Volume 27 Issue 1 Pages 24-28

Details
Abstract

In our attempt to investigate the mechanism of the release of platelet-activating factor (PAF) from cells, the erythroleukemic cell line K562 was preloaded with a radiolabeled PAF analogue having an ethylcarbamyl residue, 1-O-octadecyl-2-O-ethylcarbamyl-sn-glycero-3-phosphocholine (ethylcarbamyl-PAF), that is resistant to the hydrolytic action of PAF acetylhydrolase. Its extracellular release was monitored using an albumin back-extraction method, and its metabolic degradation was analyzed by TLC. Phorbol myristate acetate (PMA) was found to stimulate the release of two radioactive lipids, ethylcarbamyl-PAF itself and its metabolite, 1-O-octadecyl-2-ethylcarbamyl-sn-glycerol, whereas only ethylcarbamyl-PAF was released from the resting cells. The increased release of radioactive lipids in PMA-stimulated cells was suggested to be due to stimulated degradation of intracellular ethylcarbamyl-PAF into the cell-permeable metabolite. Thus K562 cells have much less capacity to release intact PAF-like lipid in comparison with its high ability to uptake exogenously added PAF analogues previously described by us and others.

Content from these authors
© 2004 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top