Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Effects of Oxypeucedanin on hKv1.5 and Action Potential Duration
Jae Soon EunJung Ah ParkBok Hee ChoiSun Kyung ChoDae Keun KimYong Geun Kwak
Author information
JOURNAL FREE ACCESS

2005 Volume 28 Issue 4 Pages 657-660

Details
Abstract

A furocoumarin derivative, oxypeucedanin, was purified from Angelica dahurica, and its effects on the human Kv1.5 (hKv1.5) channel and on the cardiac action potential duration (APD), were examined using the patch-clamp technique and the conventional microelectrode technique. Oxypeucedanin inhibited the hKv1.5 current in a concentration-dependent manner, with an IC50 value of 76 nM, while it had no effect on human eag-related gene (HERG) current. Oxypeucedanin induced an initial fast decline of hKv1.5 current during depolarizations. The inhibition of hKv1.5 channel by oxypeucedanin was voltage-dependent, especially at depolarizing pulses between −40 and 0 mV which corresponds to the voltage range of the channel's opening. Oxypeucedanin also slowed the deactivation time course, resulting in a tail crossover phenomenon. Additionally, oxypeucedanin prolonged the APD of rat atrial and ventricular muscles in a dose-dependent manner. These results suggest that oxypeucedanin is a kind of open-channel blocker of the hKv1.5 channel and it prolongs the APD; therefore, it is an excellent candidate as an antiarrhythmic drug for atrial fibrillation.

Content from these authors
© 2005 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top