Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Schisandrin B Decreases the Sensitivity of Mitochondria to Calcium Ion-Induced Permeability Transition and Protects against Carbon Tetrachloride Toxicity in Mouse Livers
Po Yee ChiuHoi Yan LeungAda Hoi Ling SiuMichel Kong Tat PoonKam Ming Ko
Author information
JOURNAL FREE ACCESS

2007 Volume 30 Issue 6 Pages 1108-1112

Details
Abstract

Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against carbon tetrachloride (CCl4) hepatotoxicity in mice. In order to elucidate the molecular mechanism underlying the hepatoprotection afforded by Sch B, the effect of Sch B treatment on the sensitivity of mitochondria to Ca2+-stimulated permeability transition (PT) was investigated in mouse livers under normal and CCl4-intoxicated conditions. CCl4 hepatotoxicity caused an increase in the sensitivity of mitochondria to Ca2+-stimulated PT in vitro. The enhanced sensitivity to mitochondrial PT was associated with increases in mitochondrial Ca2+ content as well as the extent of reactive oxidant species (ROS) production and cytochrome c release. The hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity was paralleled by the decrease in the sensitivity of hepatic mitochondria to Ca2+-stimulated PT as well as the attenuations of mitochondrial Ca2+ loading, ROS production and cytochrome c release under CCl4-intoxicated condition. In conclusion, the results suggest that the hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity may be related to the increase in the resistance of hepatic mitochondria to Ca2+-stimulated PT.

Content from these authors
© 2007 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top