Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Inhibitory Effects of Ginseng Total Saponins on Behavioral Sensitization and Dopamine Release Induced by Cocaine
BomBi LeeChae Ha YangDae-Hyun HahmHye-Jung LeeSeung-Moo HanKyung-Soo KimInsop Shim
Author information

2008 Volume 31 Issue 3 Pages 436-441


Many studies have suggested that the behavioral and reinforcing effects of cocaine can be mediated by the central dopaminergic systems. It has been shown that repeated injections of cocaine produce an increase in locomotor activity, the expression of the immediate-early gene, c-fos, and the release of dopamine (DA) in the nucleus accumbens (NAc), which is one of the main dopaminergic terminal areas. Several studies have shown that behavioral activation and changes in extracellular dopamine levels in the central nervous system induced by psychomotor stimulants are prevented by ginseng total saponins (GTS). In order to investigate the effects of GTS on the repeated cocaine-induced behavioral and neurochemical alterations, we examined the influence of GTS on the cocaine-induced behavioral sensitization and on c-Fos expression in the brain using immunohistochemistry in rats repeatedly treated with cocaine. We also examined the effect of GTS on cocaine-induced dopamine release in the NAc of freely moving rats repeatedly treated with cocaine using an in vivo microdialysis technique. Pretreatment with GTS (100, 200, 400 mg/kg, i.p.) 30 min before the daily injections of cocaine (15 mg/kg, i.p.) significantly inhibited the repeated cocaine-induced increase in locomotor activity as well as the c-Fos expression in the core and shell in a dose-dependent manner. Also, pretreatment with GTS significantly decreased the repeated cocaine-induced increase in dopamine release in the NAc. Our data demonstrate that the inhibitory effects of GTS on the repeated cocaine-induced behavioral sensitization were closely associated with the reduction of dopamine release and the postsynaptic neuronal activity. The results of the present study suggest that GTS may be effective for inhibiting the behavioral effects of cocaine by possibly modulating the central dopaminergic system. These results also suggest that GTS may prove to be a useful therapeutic agent for cocaine addiction.

Content from these authors
© 2008 The Pharmaceutical Society of Japan
Previous article Next article