Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Topically Applied Diterpenoids from Egletes viscosa (Asteraceae) Attenuate the Dermal Inflammation in Mouse Ear Induced by Tetradecanoylphorbol 13-Acetate- and Oxazolone
Iana Bantim Felício CalouDaniel Italo Maia SousaGeanne Matos de Andrade CunhaGerly Anne de Castro BritoEdilberto Rocha SilveiraVietla Satyanarayana RaoFlávia Almeida Santos
Author information
JOURNAL FREE ACCESS

2008 Volume 31 Issue 8 Pages 1511-1516

Details
Abstract
The diterpene compounds, centipedic acid (CA) and 12-acetoxyhawtriwaic acid lactone (AHAL, tanabalin) isolated from the flower buds of Egletes viscosa LESS. (Asteraceae) were evaluated on acute and chronic models of mouse ear dermatitis. A single topical application of CA (0.125; 0.25 and 0.5 mg/ear) or AHAL (0.125, 0.25, 0.5 mg/ear) immediately before 12-O-tetradecanoylphorbol-13-acetate (TPA, 2.5 μg/ear) caused a dose-related significant inhibition of ear inflammatory edema and influx of polymorphonuclear cells, as evidenced by a decrease in ear thickness and reduced myeloperoxidase (MPO) activity and tumor necrosis factor-α (TNF-α) in ear tissue homogenates. The maximal obtained inhibition for both ear edema and neutrophil influx were almost similar to that of topically applied dexamethasone (0.05 mg/ear). The extent of inhibitions for the respective treatments of CA (0.5 mg/ear), AHAL (0.5 mg/ear), or dexamethasone (0.05 mg/ear) were in the order of 63%, 61% and 81% for the ear edema, and 90%, 95% and 95% for the neutrophil influx. Also, at similar doses, both diterpenes and dexamethasone effectively inhibited the delayed-type hypersensitivity reaction induced by repeated topical application of 1% oxazolone (OXA, 20 μl/ear), as evidenced by significant decreases in ear thickness and interferon-γ (INF-γ) levels in ear tissue. Histopathological analysis revealed a marked decrease in epidermal hyperplasia and neutrophil infiltration in animals pretreated with CA or AHAL, in a manner similar to dexamethasone. These data provide evidence for the anti-dermatitis effect of Egletes viscosa diterpenes, by mechanisms that involve a reduced neutrophil influx and decreased production of inflammatory cytokines, TNF-α and IFN-γ.
Content from these authors
© 2008 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top