Biological and Pharmaceutical Bulletin
Current Topics
Role of Intracellular Defense Factors against Methylmercury Toxicity
Gi-Wook Hwang
Author information
JOURNALS FREE ACCESS

Volume 35 (2012) Issue 11 Pages 1881-1884

Details
Download PDF (499K) Contact us
Abstract

Methylmercury (MeHg) is a causative agent of Minamata disease and an environmental pollutant that comprises a large portion of organically occurring mercury. Many aspects of the biological defense mechanisms against MeHg toxicity remain unclear. Recently, nuclear factor-E2-related factor 2 (Nrf2), heat shock factor protein 1 (Hsf1), and hydrogen sulfide were identified as intracellular defense factors against MeHg toxicity. These findings suggest that novel biological defense mechanisms against MeHg toxicity exist in the living organism. In addition, the expression of downstream genes that mediate activation of the transcription factors Nrf2 and Hsf1 was markedly induced by MeHg treatment, suggesting that this action is involved in the reduction of MeHg toxicity. On the other hand, when the gaseous form of hydrogen sulfide (H2S) binds directly to MeHg, bismethylmercury sulfide (MeHg-S-HgMe) as a low toxicity metabolite is formed. This suggests the involvement of the gaseous form of H2S in the reduction of MeHg toxicity. In this topic, we summarize the roles of factors involved in novel biological defense mechanisms against MeHg toxicity.

Information related to the author
© 2012 The Pharmaceutical Society of Japan
Previous article Next article

Recently visited articles
feedback
Top