Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
Regular Articles
Neuroprotective Effect of trans-Cinnamaldehyde on the 6-Hydroxydopamine-Induced Dopaminergic Injury
Ji-Hi PyoYou-Kyung JeongSujung YeoJe-Hyun LeeMi-Young JeongSung-Hoon KimYeong-Gon ChoiSabina Lim
Author information

2013 Volume 36 Issue 12 Pages 1928-1935


The anti-inflammatory and neuroprotective effects of trans-cinnamaldehyde (TCA) were investigated on the inflammatory cells and the dopaminergic degeneration in mice. TCA inhibited the up-regulation of inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) in the lipopolysaccharide (LPS)-induced inflammatory BV2 microglial cells. To investigate the TCA efficacy on the 6-hydroxydopamine (6-OHDA)-induced dopaminergic degeneration in mice, an intracerebroventricular injection of 6-OHDA was given to the mice, and TCA (30 mg/kg) was intraperitoneally administered. At 7 d after the 6-OHDA injection, 6-OHDA led to a severe loss of tyrosine hydroxylase (TH)-positive dopaminergic neurons in the striatum and substantia nigra (SN). On the other hand, TCA dramatically maintained the number of TH-positive dopaminergic neurons in the striatum and SN regions of the 6-OHDA-treated mice, which indicates that TCA is able to inhibit the 6-OHDA-induced reduction of TH expression in the dopaminergic neurons in the striatum and SN regions. TCA also inhibited the induction of iNOS and COX-2 in the 6-OHDA model, similarly as shown in the LPS-induced inflammatory BV2 microglial cells. These results indicate that TCA has a neuroprotective effect on dopaminergic neurons and that this effect may be associated with the inhibition of inflammatory responses. These findings suggest that TCA may be a therapeutic candidate for the prevention of inflammation-mediated neurodegenerative diseases.

Information related to the author
© 2013 The Pharmaceutical Society of Japan
Previous article Next article