Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Protective Effects of Everolimus against N-Methyl-D-aspartic Acid-Induced Retinal Damage in Rats
Ikumi HayashiYuto AokiDaiki AsanoHiroko UshikuboAsami MoriKenji SakamotoTsutomu Nakahara Kunio Ishii
著者情報
ジャーナル フリー HTML
電子付録

2015 年 38 巻 11 号 p. 1765-1771

詳細
抄録

We previously demonstrated that rapamycin, an inhibitor of the mammalian target of rapamycin (mTOR), protects against N-methyl-D-aspartic acid (NMDA)-induced retinal neurotoxicity, but the mechanism underlying this protection is not fully understood. The present study aimed to examine the effects of everolimus, another inhibitor of mTOR, on neuronal cell loss and inflammation in a rat model of NMDA-induced retinal neurotoxicity, and to determine whether the extracellular signal-regulated kinase (ERK) pathway contributes to the protective effect of everolimus. Intravitreal injection of NMDA (200 nmol) resulted in (1) cell loss in the ganglion cell layer, (2) increase in the numbers of CD45-positive leukocytes and Iba1-positive microglia, and (3) phosphorylation of ribosomal protein S6 (pS6), a downstream indicator of mTOR activity. Simultaneous injection of everolimus with NMDA significantly attenuated these NMDA-induced responses. The neuroprotective effect of everolimus was almost completely prevented by the mitogen-activated protein kinase/ERK kinase inhibitor U0126 (1 nmol). NMDA increased the level of phosphorylated ERK (pERK) in Müller cells, and increase in pERK levels was also observed after co-injection of NMDA and everolimus. These results suggest that everolimus has a neuroprotective effect against NMDA-induced retinal neurotoxicity, an effect that seems to be mediated partly by activation of the ERK pathway in Müller cells.

著者関連情報
© 2015 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top