Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Potentiation of Methylmercury-Induced Death in Rat Cerebellar Granular Neurons Occurs by Further Decrease of Total Intracellular GSH with BDNF via TrkB in Vitro
Motoharu Sakaue Takehiro MakiTakuya KanekoNatsuko HemmiHitomi SekiguchiTomoyo HorioErina KadowakiAisa OzawaMasako Yamamoto
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2016 Volume 39 Issue 6 Pages 1047-1054

Details
Abstract
Brain-derived neurotrophic factor (BDNF) is a principal factor for neurogenesis, neurodevelopment and neural survival through a BDNF receptor, tropomyosin-related kinase (Trk) B, while BDNF can also cause a decrease in the intracellular glutathione (GSH) level. We investigated the exacerbation of methylmercury-induced death of rat cerebellar granular neurons (CGNs) by BDNF in vitro. Since methylmercury can decrease intracellular GSH levels, we hypothesized that a further decrease of the intracellular GSH level is involved in the process of the exacerbation of neuronal cell death. In the present study, we established that in CGN culture, a decrease of the intracellular GSH level was further potentiated with BDNF in the process of the methylmercury-induced neuronal death and also in GSH reducer-induced neuronal death. BDNF treatment promoted the decrease in GSH levels induced by methylmercury and also by L-buthionine sulfoximine (BSO) and diethyl maleate (DEM). The promoting effect of BDNF was observed in a TrkB-vector transformant of the rat neuroblastoma B35 cell line but not in the mock-vector transformant. These results indicate that the exacerbating effect of BDNF on methylmercury-induced neuronal death in cultures of CGNs includes a further decrease of intracellular GSH levels, for which TrkB is essential.
Graphical Abstract Fullsize Image
Content from these authors
© 2016 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top