Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Differential Contribution of Nerve-Derived Noradrenaline to High K+-Induced Contraction Depending on Type of Artery
Hirotake IshidaShin-ya SaitoEita HishinumaTomohisa Ishikawa
Author information
JOURNALS FREE ACCESS FULL-TEXT HTML

2017 Volume 40 Issue 1 Pages 56-60

Details
Abstract

High K+-induced contraction of arterial smooth muscle is thought to be mediated by membrane depolarization and subsequent activation of voltage-dependent Ca2+ channels (VDCCs). In line with this, this study found that contraction induced by 80 mM K+ was almost abolished by nifedipine (1 µM), a VDCC inhibitor, in isolated rat aorta, and was markedly suppressed in the iliac artery. However, nifedipine (1 µM) only partially suppressed high K+-induced contraction in the tail artery. The contractions remaining in the arteries were further reduced by non-selective cation channel (NSCC) inhibitors, including 2-aminoethoxydiphenyl borate (2-APB) (100 µM), SK&F96365 (10 µM), and 3,4-dihydro-6,7-dimethoxy-α-phenyl-N,N-bis[2-(2,3,4-trimethoxyphenyl)ethyl]-1-isoquinolineacetamide hydrochloride (LOE908) (10 µM). In particular, sustained tonic contraction was nearly abolished. Prazosin (0.3 µM), an α1-adrenoceptor antagonist, partially inhibited high K+-induced contraction in the tail and iliac arteries, but had no effect in the aorta. Consistently, tyramine potently induced contraction in the tail and iliac arteries, but not in the aorta. Furthermore, the inhibition by prazosin and NSCC inhibitors of the high K+-induced contraction in the presence of nifedipine was comparable. These results suggest that depending on the type of artery, high K+-induced contraction is mediated by Ca2+ influx not only through VDCCs but also through NSCCs, the activation of which is due to the activation of α1-adrenoceptors by the released noradrenaline from sympathetic nerve terminals resulting from high K+ stimulation.

Graphical Abstract Fullsize Image
Information related to the author
© 2017 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top