Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Glabridin Alleviates Inflammation and Nociception in Rodents by Activating BKCa Channels and Reducing NO Levels
Ali Parlar Seyfullah Oktay ArslanSaliha Ayşenur Çam
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2020 Volume 43 Issue 5 Pages 884-897

Details
Abstract

Inflammation, and the pain that accompanies it, is a natural response of the body. The licorice plant (Glycyrrhiza glabra) have demonstrated anti-inflammatory, anti-edematous, and anti-nociceptive effects of its extracts. The effective ingredient remains unidentified; however, one possibility is the unique isoflavone glabridin. The anti-nociceptive, and anti-inflammatory effects of glabridin and its possible mechanism with focus on the large conductance Ca2+-activated K+ (BKCa) channels and L-arginine-nitric oxide (NO) pathway were examined by using different tests. In order to determine the anti-edematous, anti-nociceptive, and anti-oxidative effects of glabradin, some tests such as the tail flick, hotplate, carrageenan-induced paw edema, air pouch, acetic-acid-induced writhing, formalin, and capsaicin tests, as well as toxicity and open field tests were made. Glabridin was administered to rats (n = 8) or mice (n = 8) for 3 d at 3 doses (10, 20, and 40 mg/kg). Glabridin inhibited cytokine production and showed an anti-nociceptive response via the activating of BKCa channels and downregulating NO level and partially transient receptor potential vanilloid-1 pathways. It also demonstrated anti-inflammatory effects by inhibiting cyclooxygenase (COX) activity, while showing no cytotoxicity. Glabridin, however, showed no anti-nociceptive effect in the neurogenic phase. Glabridin is a promising substance in terms of its anti-nociceptive and anti-inflammatory effects by disrupting peripheral NO production, inhibiting cyclic guanosine monophosphate (cGMP) activation and activating BKCa channels and its lack of acute and subacute toxic effects.

Graphical Abstract Fullsize Image
Content from these authors
© 2020 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top