Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Articles
Cathepsin G-Induced Cell Aggregation of Breast Cancer MCF-7 Decreases Doxorubicin Sensitivity in a Hypoxia-Inducible Factor-Independent Mechanism
Riyo Morimoto-Kamata Shun MatsukiNaoki OhkuraSatoru Yui
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML
Supplementary material

2022 Volume 45 Issue 12 Pages 1772-1783

Details
Abstract

Solid tumors habitually harbor regions with insufficient oxygen away from vasculature. Hypoxia is an important factor that confers malignant phenotypes like chemoresistance to tumor cells. We have demonstrated that cathepsin G (CG) stimulates cell aggregation in breast cancer MCF-7 cells by activating insulin-like growth factor-1 signaling. We investigated whether cancer cell aggregates induced by CG acquire hypoxia-dependent chemoresistance. Pimonidazole staining and hypoxia-inducible factor (HIF)-1α and -2α expression indicated that the core of the cell aggregates was hypoxic. Electrophoretic mobility shift and reporter assays showed that the CG-induced cell aggregates displayed transcriptional activity through HIF-responsive elements. Moreover, HIF target genes PGK1 and SLC2A1 demonstrated upregulated expression in CG-induced cell aggregates, indicating that the aggregates expressed functional HIF. Doxorubicin (DXR)-induced cytotoxicity was significantly lower in the cell aggregates induced by CG compared with monolayer cells under normoxia. Unexpectedly, the upregulation of P-glycoprotein expression, which is reported to be a HIF-target gene, and decreasing intracellular accumulation of DXR was not detected in the cell aggregates as opposed to in monolayer cells under normoxia. Additionally, reduction of DXR sensitivity in the aggregates was not suppressed by treatment with the HIF inhibitor, YC-1 and HIF-1α small interfering RNA (siRNA). Therefore, we conclude that cell aggregation induced by CG decreases DXR sensitivity via a HIF-independent mechanism.

Fullsize Image
Content from these authors
© 2022 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top