Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158
Regular Article
Cynaropicrin Increases [Ca2+]i and Ciliary Beat Frequency in Human Airway Epithelial Cells by Inhibiting SERCA
Nobuhisa TodoShigekuni Hosogi Seikou NakamuraKouta NoriyamaNobuyo TamiyaYuki TodaMasaki ShigetaKoichi TakayamaEishi Ashihara
Author information
JOURNAL OPEN ACCESS FULL-TEXT HTML
Supplementary material

2024 Volume 47 Issue 12 Pages 2119-2126

Details
Abstract

Mucociliary clearance (MCC) is a host defense mechanism of the respiratory system. Beating cilia plays a crucial role in the MCC process and ciliary beat frequency (CBF) is activated by several factors including elevations of the intracellular cAMP concentration ([cAMP]i), intracellular Ca2+ concentration ([Ca2+]i), and intracellular pH (pHi). In this study, we investigated whether an artichoke-extracted component cynaropicrin could be a beneficial compound for improving MCC. We found that cynaropicrin increased [cAMP]i using A549 cells bearing Pink Flamindo. Then, we also confirmed that cynaropicrin elevates CBF using airway epithelial ciliated cells (AECCs). We next investigated the effects of cynaropicrin on the alternation of [Ca2+]i, and pHi. Cynaropicrin increased [Ca2+]i, but not pHi. Further experiments also found that cynaropicrin increased [cAMP]i primarily by raising [Ca2+]i. To elucidate the mechanisms of cynaropicrin to increase [Ca2+]i, we investigated the alternation of the effects of cynaropicrin on [Ca2+]i using several compounds. BTP-2 and ruthenium red (RuR) inhibited cynaropicrin-induced [Ca2+]i increase and RuR reduced also [cAMP]i. These results suggest that cynaropicrion increased [Ca2+]i by augmenting the Ca2+ influx and that the increase of [cAMP]i by cynaropicrin was induced by [Ca2+]i elevation. Interestingly, cynaropicrin decreased the Ca2+ concentration in the endoplasmic reticulum following inhibition of sarco-endoplasmic reticulum Ca2+-ATPase (SERCA). SERCA activator CDN1163 abolished this effect. Furthermore, RuR and Ca2+-free conditions suppressed the increase of CBF. In conclusion, cynaropicrin inhibits SERCA, induces store-operated calcium entry, and thereby increases CBF.

Fullsize Image
Content from these authors
© 2024 Author(s)
Published by The Pharmaceutical Society of Japan

This article is licensed under a Creative Commons [Attribution-NonCommercial 4.0 International] license.
https://creativecommons.org/licenses/by-nc/4.0/
Previous article Next article
feedback
Top