Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Qiliqiangxin attenuates oxidative stress-induced mitochondrion-dependent apoptosis in cardiomyocytes via PI3K/AKT/GSK3β signaling pathway
Qifei ZhaoHongrong LiLiping ChangCong WeiYujie YinHongying BeiZhixin WangJunqing LiangYiling Wu
著者情報
ジャーナル フリー 早期公開

論文ID: b19-00050

この記事には本公開記事があります。
詳細
抄録

Qiliqiangxin capsule (QLQX) is a well-known traditional Chinese medicine that exhibits cardioprotective effects in heart failure patients. However, it remains unclear whether and by which mechanism QLQX attenuates oxidative stress-induced mitochondria-dependent myocardial apoptosis. In vivo, SD rats received left anterior descending coronary artery ligation for 4 weeks to establish a model of heart failure after acute myocardial infarction, and then were treated with QLQX for another 4 weeks. We evaluated cardiac function, oxidative stress injury, as well as the expressions of mitochondria-dependent apoptosis and its signaling factors. The results indicated that QLQX protected cardiac function and attenuated oxidative stress-induced myocardial apoptosis. Meanwhile, QLQX elevated the Bcl-2 expression, declined the expressions of Bax, cytochrome c, apoptotic protease activating factor-1 (Apaf-1), cleaved-caspase9 and cleaved-caspase3, and up-regulated the ratios of phospho-AKT/AKT and phospho-GSK3β/GSK3β. In vitro, H9c2 cardiomyocytes were pretreated with QLQX, then exposed to H2O2 for 24 h. QLQX promoted the proliferation of H9c2 cardiomyocytes induced by H2O2 and reversed oxidative stress damage. Moreover, QLQX inhibited the apoptosis rate and the pro-apoptosis protein expressions, but improved the Bcl-2 expression as well as the ratios of phospho-AKT/AKT and phospho-GSK3β/GSK3β. Meanwhile, it further ameliorated mitochondrion-related apoptosis by inhibiting the mitochondrial fission, mitochondrial permeability transition pore (MPTP) opening, and mitochondrial membrane potential (MMP) decline in H9c2 cardiomyocytes induced by H2O2. In addition, all the effects of QLQX on H2O2-induced mitochondria-dependent apoptosis could be blocked by the PI3K inhibitor, LY294002. We conclude that QLQX may ameliorate oxidative stress-induced mitochondria-dependent apoptosis in cardiomyocytes through PI3K/AKT/GSK3β signaling pathway.

著者関連情報
© 2019 The Pharmaceutical Society of Japan
feedback
Top