Biological and Pharmaceutical Bulletin
Online ISSN : 1347-5215
Print ISSN : 0918-6158
ISSN-L : 0918-6158

This article has now been updated. Please use the final version.

Differences in pharmacokinetics and haematotoxicities of aniline and its dimethyl derivatives orally administered in rats
Tomonori MiuraYusuke KamiyaNorie MurayamaMakiko ShimizuHiroshi Yamazaki
Author information
JOURNAL FREE ACCESS Advance online publication

Article ID: b21-00589

Details
Abstract

Aniline and its dimethyl derivatives reportedly become haematotoxic after metabolic N-hydroxylation of their amino groups. The plasma concentrations of aniline and its dimethyl derivatives after single oral doses of 25 mg/kg in rats were quantitatively measured and semi-quantitatively estimated using liquid chromatography–tandem mass spectrometry. The quantitatively determined elimination rates of aniline; 2,4-dimethylaniline; and 3,5-dimethylaniline based on rat plasma versus time curves were generally rapid compared with those of 2,3-; 2,5-; 2,6-; and N,2-dimethylaniline. The primary acetylated metabolites of aniline; 2,4-dimethylaniline; and 3,5-dimethylaniline, as semi-quantitatively estimated based on their peak areas in liquid chromatography analyses, were more extensively formed than those of 2,3-; 2,5-; 2,6-; and N,2-dimethylaniline. The areas under the curve of unmetabolized (remaining) aniline and its dimethyl derivatives estimated using simplified physiologically based pharmacokinetic models (that were set up using the experimental plasma concentrations) showed an apparently positive correlation with the reported lowest-observed-effect levels for haematotoxicity of these chemicals. In the case of 2,4-dimethylaniline, a methyl group at another C4-positon would be one of the determinant factors for rapid metabolic elimination to form aminotoluic acid. These results suggest that rapid and extensive metabolic activation of aniline and its dimethyl derivatives occurred in rats and that the presence of a methyl group at the C2-positon may generally suppress fast metabolic rates of dimethyl aniline derivatives that promote metabolic activation reactions at NH2 moieties.

Content from these authors
© 2021 The Pharmaceutical Society of Japan
feedback
Top