Circulation Journal
Online ISSN : 1347-4820
Print ISSN : 1346-9843
ISSN-L : 1346-9843
Experimental Investigation
Link Between SCN5A Mutation and the Brugada Syndrome ECG Phenotype
Simulation Study
Shunichiro MiyoshiHideo MitamuraYukiko FukudaKojiro TanimotoYoko HagiwaraHideaki KankiSeiji TakatsukiMitsushige MurataToshihisa MiyazakiSatoshi Ogawa
Author information
JOURNAL FREE ACCESS

2005 Volume 69 Issue 5 Pages 567-575

Details
Abstract

Background The specific changes in the gating kinetics of the sodium current (INa) responsible for its phenotype have remained to be elucidated. In the present study the effect of changes in the gating kinetics of INa on early repolarization (ER) and initiation of phase 2 reentry (P2R) were evaluated in a theoretical epicardial ventricular fiber model. Methods and Results Miyoshi-ICaL was incorporated into the modified Luo-Rudy dynamic (LRd) model. Dispersion at Ito-density was set within a theoretical fiber composed of serially arranged epicardial cells with gap junctions. The following changes in INa kinetics were made: (1) a -10 mV shift in steady-state inactivation, (2) a +10 mV shift in steady-state activation curve, (3) a small inactivation time constant (DEC); P2R and ER were observed. A conduction disturbance within the fiber was simulated and only when the INa-density was decreased did DEC, especially, show a marked increase in the likelihood of causing ER and P2R. Conduction disturbance significantly increased the likelihood causing ER or P2R. Conclusions In this one-dimension model with Ito-density dispersion, DEC-INa precipitates INa-blocker inducible ER. This suggests that the characteristic ST-segment elevation in the Brugada syndrome with SCN5A mutation can be interpreted in part by DEC-INa. Concomitant conduction disturbance may be required to cause P2R at physiological Ito density. (Circ J 2005; 69: 567 - 575)

Content from these authors
© 2005 THE JAPANESE CIRCULATION SOCIETY
Previous article Next article
feedback
Top