Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Synthesis and in Vitro Antioxidant Activity of Glycyrrhetinic Acid Derivatives Tested with the Cytochrome P450/NADPH System
Mourboul AbliseBrigitte Leininger-MullerChoi Dal WongGérard SiestVincent LoppinetSophie Visvikis
Author information

2004 Volume 52 Issue 12 Pages 1436-1439


Five glycyrrhetinic acid (Ib) derivatives have been synthesized to try to improve the antioxidant activity. Their in vitro antioxidant activities were studied using a cytochrome P450/NADPH reductase system from rat liver microsomes. The generation of microsomal free radicals was followed by oxidation of the DCFH-DA probe, while evaluating the capacity to inhibit reactive oxygen species (ROS) formation. Two hydroxylated derivatives, 18β-olean-12-ene-3β,11α,30-triol (II) and 18β-olean-12-ene-3β,11β,30-triol (IV), exhibited strong antioxidant activities. At a concentration of 1.0 mg/ml, these derivatives inhibited ROS formation by 50% and 51%, respectively. Moreover, two homo- and heterocyclic diene derivatives, 18β-olean-11,13(18)-diene-3β,30-diol (III) and 18β-olean-9(11),12-diene-3β,30-diol (V), were also effective in ROS-scavenging activity (inhibition of 41% and 44% of ROS activity, respectively). In the same conditions, the lead compound (Ib) and the reference vitamin E inhibited ROS activity by 31% and 32%, respectively. Our results suggest that the chemical reduction of the 11-keto and 30-carboxyl groups into hydroxyl function (example, II, IV) can increase the antioxidant activity of Ib significantly. In view of these results, our study represents a further approach to the development of potential therapeutic agents from Ib derivatives for use in pathologic events in which, free radical damage could be involved.

Information related to the author
© 2004 The Pharmaceutical Society of Japan
Previous article Next article