Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Use of the Co-grinding Method to Enhance the Dissolution Behavior of a Poorly Water-Soluble Drug: Generation of Solvent-Free Drug–Polymer Solid Dispersions
Caiqin YangXiujuan XuJing WangZhiqian An
著者情報
ジャーナル フリー

2012 年 60 巻 7 号 p. 837-845

詳細
抄録

The solid dispersion (SD) technique is the most effective method for improving the dissolution rate of poorly water-soluble drugs. In the present work, SDs of the Ca2+ channel blocker dipfluzine (DF) with polyvinylpyrrolidone K30 (PVP) and poloxamer 188 (PLXM) were prepared by the powder solid co-grinding method under a solvent-free condition. The properties of all SDs and physical mixtures were investigated by X-ray diffraction, Fourier-transform infrared, differential scanning calorimetry, scanning electron microscopy, dissolution test, and particles size determination. Eutectic compounds were produced between the DF and PLXM matrix during the co-grinding process, whereas glass suspension formed in the SDs with PVP carrier. Hydrogen bond formation was not observed between DF and carriers and DF was microcrystalline state in the PVP and PLXM matrices. The solubility of DF in different concentration of carriers at 25, 31, and 37°C was investigated; the values obtained were used to calculate the thermodynamic parameters of interaction between DF and carriers. The Gibbs free energy (ΔrGθ) values were negative, indicating the spontaneous nature of dispersing DF into the carriers. Moreover, entropy is the drive force when DF disperses into the matrix of PVP, while, enthalpy-driven dispersing encounters in the PLXM carrier. All the SDs of DF/carriers showed a considerably higher dissolution rate than pure DF and the corresponding physical mixtures. The cumulative dissolution rate at 10 min of the SD with a 1 : 3 DF/carrier ratio increased 5.1-fold for PVP and 5.5-fold for PLXM.

著者関連情報
© 2012 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top