Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Discovery and Exploitation of AZADO: The Highly Active Catalyst for Alcohol Oxidation
Yoshiharu Iwabuchi
Author information

2013 Volume 61 Issue 12 Pages 1197-1213


The oxidation of primary and secondary alcohols to the corresponding aldehydes (or carboxylic acids) or ketones is a fundamental transformation in organic synthesis. Stable organic nitroxyl radicals as represented by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) (1) have been used extensively to catalyze the oxidation of a number of alcohol substrates employing environmentally benign co-oxidants such as bleach (NaOCl) or PhI(OAc)2. Although TEMPO oxidation is better known as a method for selective oxidation of primary alcohols to the corresponding aldehydes, the TEMPO-based method is not very efficient for the oxidation of structurally hindered secondary alcohols. We designed and synthesized 2-azaadamantane N-oxyl [AZADO (11)] and 1-Me-AZADO (20), a structurally less hindered class of nitroxyl radical. AZADOs were found to exhibit excellent catalytic activity enabling oxidation of a variety of alcohols with which TEMPO exhibits poor reactivity. Based on structure–activity relationships (SAR) employing AZADO (11), 1-Me-AZADO (20), 1,3-dimethyl-AZADO (33), 9-azabicyclo[3.3.1]nonane-N-oxyl [ABNO (34)] and 9-azanoradamantane N-oxyl [Nor-AZADO (37)], we concluded that the α-methyl group flanked nearby the nitroxyl group affects the reactivity for the oxidation of sterically hindered alcohols and the azaadamantane skeleton contributes to the high turnover of the catalyst. The highly active nature of AZADOs spurred us to exploit their further use in alcohol oxidations. A facile, green, one-pot oxidation of primary alcohols to carboxylic acids with broad substrate applicability has been developed by employing an expedient catalytic system consisting of the oxoammonium salt [1-Me-AZADO+X (X=Cl, BF4)]/NaClO2. The synthetic use of AZADOs and the related nitroxyl radicals/oxoammonium salts-based methods for alcohol oxidation have been demonstrated in several total syntheses of natural products. We also describe the development of a Nor-AZADO (37)/DIAD/AcOH method that offers exceptionally mild and highly chemoselective oxidation of alcohols.

Information related to the author
© 2013 The Pharmaceutical Society of Japan
Next article