Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Synthesis, Structure Characterization and Antitumor Activity Study of a New Iron(III) Complex of 5-Nitro-8-hydroxylquinoline (HNOQ)
Hai-Rong ZhangTing MengYan-Cheng Liu Qi-Pin QinZhen-Feng ChenYou-Nian LiuHong Liang
著者情報
ジャーナル フリー HTML
電子付録

2016 年 64 巻 8 号 p. 1208-1217

詳細
抄録

A new iron(III) complex (1) of 5-nitro-8-hydroxylquinoline (HNOQ) was synthesized and structurally characterized in its solid state and solution state by IR, UV-Vis, electrospray ionization (ESI)-MS, elemental analysis, conductivity and X-ray single crystal diffraction analysis. The DNA binding study suggested that complex 1 interacted with calf thymus (ct)-DNA mainly via an intercalative binding mode. By 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay, the in vitro cytotoxicity of complex 1, comparing with HNOQ and cisplatin, was screened towards a series of tumor cell lines as well as the normal liver cell line HL-7702. Complex 1 showed higher cytotoxicity towards the tested tumor cell lines but lower cytotoxicity towards HL-7702 than HNOQ, in which the T-24 was the most sensitive cell line for 1. Complex 1 caused G2 phase cell cycle arrest and induced cell apoptosis in T-24 cells in a dose-dependent mode, evidenced by changes in cell morphology. Targeting the mitochondrial pathway due to the redox potential of Fe(III)/Fe(II), the apoptotic mechanism in T-24 cells treated by 1 was investigated by reactive oxygen species (ROS) detection, intracellular [Ca2+] measurement and caspase-9 and caspase-3 activity assay. It suggested that complex 1 induced cell apoptosis by triggering the caspase-9 and caspase-3 activation via a mitochondrion-mediated pathway.

Fullsize Image
著者関連情報
© 2016 The Pharmaceutical Society of Japan
前の記事 次の記事
feedback
Top