Chemical and Pharmaceutical Bulletin
Online ISSN : 1347-5223
Print ISSN : 0009-2363
ISSN-L : 0009-2363
Regular Articles
Characterization of Tableting Speed-Dependent Deformation Properties of Active Pharmaceutical Ingredients in Powder Mixtures Using Out-of-Die Method
Daisuke Mizunaga Mika KosekiNaoki KamemotoSatoru Watano
Author information
JOURNAL FREE ACCESS FULL-TEXT HTML

2021 Volume 69 Issue 12 Pages 1184-1194

Details
Abstract

A quantitative evaluation method for determining the effect of tableting speed on the compression properties of pharmaceutical powders was investigated in this study. Cilostazol and ibuprofen were used as active pharmaceutical ingredients (APIs) and mixed with lactose monohydrate and microcrystalline cellulose. Viscoelasticity was examined to evaluate the raw material, and stress relaxation tests were conducted to determine the apparent viscosity and elasticity coefficients of the placebo and two APIs. Tablets were prepared using a compaction simulator and a rotary tablet press at the tableting speeds ranging from laboratory to commercial. The in-die or out-of-die strain rate sensitivity (SRS) indices were determined as a measure of the compressibility and compactibility. The results showed that the sensitivity of the out-of-die SRS was higher than that of the in-die SRS. The out-of-die SRS of ibuprofen 20% powder, which showed high elasticity and low viscosity, was 13.3–47.9%, whereas that of the placebo and cilostazol 20% (w/w) powder was <7.5%. A peripheral speed difference of more than 300 mm/s during the out-of-die SRS was sensitive enough to detect the capping tendency. Cilostazol, which has lower elasticity and higher viscosity than ibuprofen, was tested using powder mixtures with the API concentrations of 5–40%; the compressibility SRS was <5% for all API concentrations. In contrast, the compressibility SRS of ibuprofen increased from 4.8 to 81% depending on the API concentration. Using the compressibility SRS as an index, it was possible to extract the tableting speed-dependent compressibility characteristics of API from the powder mixtures containing API.

Fullsize Image
Content from these authors
© 2021 The Pharmaceutical Society of Japan
Previous article Next article
feedback
Top