Abstract
The purpose of this study was to propose a new numerical modeling of the glass fiber cloth reinforced denture base resin (GFRP). The proposed model is constructed with an isotropic shell, beam and orthotropic shell elements representing the outmost resin, interlaminar resin and glass fiber cloth, respectively. The proposed model was applied to the failure progress analysis under three-point bending conditions, the validity of the numerical model was checked through comparisons with experimental results. The failure progress behaviors involving the local failures, such as interlaminar delamination and resin failure, could be simulated using the numerical model for analyzing the failure progress of GFRP. It is concluded that the model was effective for the failure progress analysis of GFRP.