Journal of the Eastern Asia Society for Transportation Studies
Online ISSN : 1881-1124
ISSN-L : 1341-8521
C: Travel Demand Analysis and Forecast
Trip Estimation for Urban Planning through Transport Big Data Analysis
Kazushige ENDORyuichi IMAITakato UEHARAYosuke HINO
著者情報
ジャーナル フリー

2022 年 14 巻 p. 530-541

詳細
抄録

The paper introduces a method for acquiring trip behaviors within walking distance by means of multiple big data. First, an optimal set of big data is selected from possible sets of big data in the transport sector to estimate the trip behaviors. Second, the authors propose a method of estimating trip volume and trip modes. Finally, the proposed method is applied to a case study that has been carried out at Tachikawa Station of the Japan Railway Central Line in Tokyo in order to validate the proposed method. A field test with the use of the Wi-Fi packet sensor was conducted at 11 locations including stores and traffic nodes on 1st of September 2018The estimated trips were nearly the same as the actual situations. The authors have demonstrated the possibility of using Wi-Fi packet sensor data and Mobile Phone Location Data to acquire trip behaviors within walking distance.

著者関連情報
© 2022 Eastern Asia Society for Transportation Studies
前の記事 次の記事
feedback
Top