Electrochemistry
Online ISSN : 2186-2451
Print ISSN : 1344-3542
ISSN-L : 1344-3542
報文
リチウムイオン電池に用いるインターカレーション電極の相分離条件に関する熱力学的考察
山木 準一江頭 港岡田 重人
著者情報
ジャーナル フリー

2001 年 69 巻 9 号 p. 664-669

詳細
抄録

Lithium intercalation materials are widely used in lithium ion cells as cathode and anode active materials. Lithium intercalation materials show sometimes phase separation as a function of the amount of inserted Li+. The thermodynamic criterion of the phase separation of binary mixtures is already known using Gibbs free energy. The criterion of the phase separation was applied to that of lithium intercalation materials. We demonstrated the phase separation condition of the Li cathode for the cases of Gas Model and Coulomb Potential Model. By using Gas Model, the cathode potential is written as E = E0 + Ky + (RT/F) ln [(1−y)/y], where E is the cathode potential (V vs. Li), y is Li occupancy. In this case, two phase area is exp (−KF/2RT)<y<1−exp (−KF/2RT) and the potential is E0 + K/2. We have been considering the contribution of the internal energy change to the cell voltage (E vs. Li/Li+) assuming that the cathode material was completely ionic and only the Coulomb potential was effective in terms of changing the internal energy. From this model, we calculated E0 = 3.879 V and K = 1.020 V for LixNiO2 where y = 4 x (0<x<0.25). In this case, two phase area is 2.396 × 10−9 < y < 1 − 2.396 × 10−9 and the potential is 4.384 V.

著者関連情報
© 2001 公益社団法人 電気化学会
前の記事 次の記事
feedback
Top