2017 年 14 巻 15 号 p. 20170637
This paper proposes an Energy-Efficient Reconfigurable Architecture (E-ERA) for Recurrent Neural Networks (RNNs). In E-ERA, reconfigurable computing arrays with approximate multipliers and dynamically adaptive accuracy controlling mechanism are implemented to achieve high energy efficiency. The E-ERA prototype is implemented on TSMC 45 nm process. Experimental results show that, comparing with traditional designs, the power consumption of E-ERA is reduced by 28.6%∼52.3%, with only 5.3%∼9.2% loss in accuracy. Compared with state-of-the-art architectures, E-ERA outperforms up to 1.78X in power efficiency and can achieve 304 GOPS/W when processing RNNs for speech recognition.