IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

VLSI design of a power-efficient object detector using PCANet
Yuteng ZhouXinming Huang
著者情報
キーワード: PCANet, ADAS, low power, CNN, object detection, VLSI
ジャーナル フリー 早期公開

論文ID: 15.20180396

この記事には本公開記事があります。
詳細
抄録

This paper presents the hardware architecture and VLSI implementations of a PCANet-based object detector. The proposed PCANet model, cascaded with a linear support vector machine, can achieve better classification performance than traditional handcrafted computer vision methods, yet it is significantly more power efficient than multi-layer convolutional neural networks. The proposed pipeline hardware architecture, when implemented using Synopsys 32nm process technology, results in 27.4fps while processing 1080P, with only 0.5watt power consumption. Targeted for the application of advanced driver assistance system, the proposed design is evaluated on road marking and traffic light dataset with an accuracy result of 96.8% and 93.1% respectively. Therefore, the proposed VLSI implementation of PCANet algorithm provides a high-throughput and power-efficient solution for object detection applications.

著者関連情報
© 2018 by The Institute of Electronics, Information and Communication Engineers
feedback
Top