IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Acceleration of nonequilibrium Green's function simulation for nanoscale FETs by applying convolutional neural network model
Satofumi SoumaMatsuto Ogawa
著者情報
ジャーナル フリー 早期公開

論文ID: 17.20190739

この記事には本公開記事があります。
詳細
抄録

We investigate the application of convolutional neural networks (CNNs) to accelerate quantum mechanical transport simulations (based on the nonequilibrium Green's function (NEGF) method) of double-gate MOSFETS. In paricular, given a potential distribution as input data, we implement the convolutional autoencoder to train and predict the carrier density and local quantum capacitance distributions. The results indicate that the use of a single trained CNN model in the NEGF self-consistent calculation along with Poisson's equation produces accurate potentials for a wide range of the gate lengths, and all within a significantly shorter computational time than the conventional NEGF calculations.

著者関連情報
© 2020 by The Institute of Electronics, Information and Communication Engineers
feedback
Top