IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

Bayesian Neural Network Based Inductance Calculations of Wireless Power Transfer Systems
Kai SatoToshiki KanamotoRyotaro KudoKoutaro HachiyaAtsushi Kurokawa
著者情報
ジャーナル フリー 早期公開

論文ID: 20.20230030

この記事には本公開記事があります。
詳細
抄録

This letter proposes a new method for obtaining self and mutual inductances in wireless power transfer (WPT) systems using a Bayesian neural network (BNN). Generally, inductance calculations using a field solver take a huge amount of time. Moreover, due to the complexity of WPT systems, there is no approximate equation for calculating inductances including ferrite shields. In this letter, nine structural parameters of a WPT system are experimentally used as inputs. The experimental results demonstrate that inductances obtained by the proposed method are within 5.1% in the maximum errors and within 1.1% in the mean absolute errors. The proposed method is about 748k times faster than the field solver in the CPU time required to obtain the inductances of one structure.

著者関連情報
© 2023 by The Institute of Electronics, Information and Communication Engineers
feedback
Top