IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A Machine Learning Resistant PUF Circuit Adjustment Method Based on Strict Avalanche Criterion
Jinhao XieHuaguo LiangChanglong CaoLiang YaoYingchun Lu
著者情報
ジャーナル フリー 早期公開

論文ID: 21.20240245

この記事には本公開記事があります。
詳細
抄録

Physical Unclonable Functions(PUF) is a kind of hardware security primitive which is vulnerable to machine learning attacks. This work proposed a structural adjustment method based on Arbiter PUF(APUF), with the Strict Avalanche Criterion (SAC) as a guideline, improves the SAC property by leading multiple arbiters to obfuscation circuits at intermediate positions; quantitative analysis of SAC property by optimization method leads to the best placement of arbiters, which improves the utilization of resources. FPGA experiment results show that the proposed method significantly improves PUF’s resistance to machine learning attack such as logistic regression, evolutionary strategies and deep neural networks, and requires lower hardware resources overhead compared to other similar APUF based schemes with the same attack resistance.

著者関連情報
© 2024 by The Institute of Electronics, Information and Communication Engineers
feedback
Top