IEICE Electronics Express
Online ISSN : 1349-2543
ISSN-L : 1349-2543

この記事には本公開記事があります。本公開記事を参照してください。
引用する場合も本公開記事を引用してください。

A High Dimensional and High Sigma Statistical Model for SRAM Read Access Yield Estimation
Xudong Zhang
著者情報
キーワード: SRAM, Yield Analysis, High sigma
ジャーナル フリー 早期公開

論文ID: 21.20240524

この記事には本公開記事があります。
詳細
抄録

Statistical analysis for the yield of large-scale circuits is quite difficult due to expensive simulations, especially for the memory circuits with high sigma requirement (e.g., SRAM). In this paper, we developed an efficient sparse additive model to substitute simulations. To fit high sigma region accurately, the modeling center is moved to near failure boundary searched by scaling the shape of sampling function. To solve the model efficiently, the process variables are grouped by standard cells so that the model can be solved by our developed blockwise greedy algorithm. The experiments on the 28nm memory circuits validate that our method achieves high accuracy and efficiency compared with other state-of-art works.

著者関連情報
© 2024 by The Institute of Electronics, Information and Communication Engineers
feedback
Top