ソフトウェア工学の基礎ワークショップ論文集
Online ISSN : 2436-634X
第31回ソフトウェア工学の基礎ワークショップ(FOSE2024)
会議情報

差別データ多様性を意識した敵対的標本に基づく公平性テスト算法
神吉 孝洋岡野 浩三小形 真平北村 崇師
著者情報
会議録・要旨集 フリー

p. 209-210

詳細
抄録

In recent years, decision-making algorithms based on machine learning have become widely used in everyday life. While these algorithms often make more accurate judgments than humans, they can also learn biases and potentially compromise fairness. This study proposes an enhancement to an existing method that uses deep neural networks (DNN) to search for discriminatory data. By incorporating diversity into the search process, we demonstrate that our method can more effectively identify a wider range of discriminatory data compared to traditional approaches.

著者関連情報
前の記事 次の記事
feedback
Top