2025 Volume 100 Article ID: 24-00110
We aimed to identify new mutants resulting from ONSEN transposition in Arabidopsis thaliana by subjecting nrpd1 mutant seedlings to heat stress. We isolated a mutant with a significantly elongated hypocotyl, named Long hypocotyl in ONSEN-inserted line 1 (hyo1). This phenotype was heritable, with progeny consistently displaying longer hypocotyls than the wild type. Genetic analysis revealed that this trait was due to a single recessive mutation. Further mapping and sequencing identified the insertion of ONSEN into the HY2 gene, a crucial regulator of hypocotyl elongation. The insertion disrupted HY2 transcription, as confirmed by quantitative PCR, leading to the observed phenotype. To assess any influence of the nrpd1 background, we generated lines backcrossed twice to wild-type Col-0, and the results were consistent with those observed in the original mutant lines. Furthermore, we examined the effect of HY2 and HYO1 mutations on flowering time by analyzing the expression levels of FT. The hyo1 mutant exhibited earlier flowering compared to both wild type and the nrpd1 mutant, with increased FT expression levels. This research highlights the impact of ONSEN transposition on gene function and phenotypic variation in A. thaliana, providing new insights into the mutagenic potential of transposons and their role in shaping plant traits.