Translated Abstract
We used Puyo-puyo esports, one of the computer game software, and focused on measuring movement-related cortical potential (MRCP) and heart-beat evoked potential (HEP) as brain activities to evaluate the degree of acquiring the proficiency of the Puyo-puyo esports. To clarify the modulations of the MRCP and the HEP to parameters related to the experiment, we constructed 64 statistical models and performed model selection based on Akaike information criteria for the models. For the MRCP, a model that included day was selected. The MRCP increased over the course of the experimental days, indicating that participants gradually increased the amount of brain resources in the process of mastering Puyo-puyo esports. For the HEP at the fronto-central electrodes, a model that includes days was selected. The HEP at the fronto-central electrodes deflected in a positive direction as the experimental day progressed, suggesting that the participants shifted their attention to exoceptive perception to interoceptive perception as the proficiency of Puyo-puyo increased. We showed the possibility that MRCP and HEP can evaluate the process of acquiring the proficiency of the computer game.
References
- [1] Buckley D., Chen K., Knowles J.: Predicting skill from gameplay input to a first-person shooter. IEEE Conference on Computatonal Intelligence and Games, pp.1-8 (2013).
- [2] Smerdov A., Somov A., Burnaev, E., Stepanov A.: AI-enabled prediction of video game player performance using the data from heterogeneous sensors. Multimed Tools Appl, Vol. 82, No. 7, pp.11021-11046 (2023).
- [3] Kornhuber H. H., Deecke L.: Changes in the Brain Potential in Voluntary Movements and Passive Movements in Man: Readiness Potential and Reafferent Potentials, Pflugers Arch Gesamte Physiol Menschen Tiere, Vol.284, pp.1-17(1965).
- [4] Shibasaki H., Barrett G., Halliday E., Halliday A. M.: Components of the movement-related cortical potential and their scalp topography, Electroencephalogr Clin Neurophysiol, Vol.49, No.3-4, pp.213-226(1980).
- [5] Deecke L., Boschert J., Weinberg H., Brickett P.: Magnetic fields of the human brain (Bereitschaftsmagnetfeld) preceding voluntary foot and toe movements, Exp Brain Res, Vol.52, No.1, pp.81-86(1983).
- [6] Deecke L., Kornhuber H. H.: An electrical sign of participation of the mesial 'supplementary' motor cortex in human voluntary finger movement, Brain Res, Vol.159, No.2, pp.473-476(1978).
- [7] Deecke L., Lang W., Heller H. J., Hufnagl M., Kornhuber H. H.: Bereitschaftspotential in patients with unilateral lesions of the supplementary motor area, J Neurol Neurosurg Psychiatry, Vol.50, No.11, pp.1430-1434(1987).
- [8] Deecke L., Scheid P., Kornhuber H. H.: Distribution of readiness potential, pre-motion positivity, and motor potential of the human cerebral cortex preceding voluntary finger movements, Exp Brain Res, Vol.7, No.2, pp.158-168(1969).
- [9] Deecke L., Weinberg H., Brickett P.: Magnetic fields of the human brain accompanying voluntary movement: Bereitschaftsmagnetfeld, Exp Brain Res, Vol.48, No.1, pp.144-148(1982).
- [10] Toma K., Matsuoka T., Immisch I., Mima T., Waldvogel D., Koshy B., Hanakawa T., Shill H., Hallett M.: Generators of movement-related cortical potentials: fMRI-constrained EEG dipole source analysis, Neuroimage, Vol.17, No.1, pp.161-173(2002).
- [11] Vaughan H. G., Jr ., Costa L. D., Ritter W.: Topography of the human motor potential, Electroencephalogr Clin Neurophysiol, Vol.25, No.1, pp.1-10(1968).
- [12] Barrett G., Shibasaki H., Neshige R.: A computer-assisted method for averaging movement-related cortical potentials with respect to EMG onset, Electroencephalogr Clin Neurophysiol, Vol.60, No.3, pp.276-281(1985).
- [13] Barrett G., Shibasaki H., Neshige R.: Cortical potentials preceding voluntary movement: evidence for three periods of preparation in man, Electroencephalogr Clin Neurophysiol, Vol.63, No.4, pp.327-339(1986).
- [14] Shibasaki H., Barrett G., Halliday E., Halliday A. M.: Cortical potentials associated with voluntary foot movement in man, Electroencephalogr Clin Neurophysiol, Vol.52, No.6, pp.507-516(1981).
- [15] Shibasaki H., Hallett M.: What is the Bereitschaftspotential?, Clin Neurophysiol, Vol.117, No.11, pp.23412356(2006).
- [16] Wright D. J., Holmes P. S., Smith D.: Using the movement-related cortical potential to study motor skill learning, J Mot Behav, Vol.43, No.3, pp.193-201(2011).
- [17] Lang W., Beisteiner R., Lindinger G., Deecke L.: Changes of cortical activity when executing learned motor sequences, Exp Brain Res, Vol.89, No.2, pp.435-440(1992).
- [18] Fattapposta F., Amabile G., Cordischi M. V., Di Venanzio D., Foti A., Pierelli F., D'Alessio C., Pigozzi F., Parisi A., Morrocutti C.: Long-term practice effects on a new skilled motor learning: an electrophysiological study, Electroencephalogr Clin Neurophysiol, Vol.99, No.6, pp.495-507(1996).
- [19] Di Russ F., Pitzalis S., Aprile T., Spinelli D.: Effect of practice on brain activity: an investigation in top-level rifle shooters, Med Sci Sports Exerc, Vol.37, No.9, pp.1586-1593(2005).
- [20] Kita Y., Mori A., Nara M.: Two types of movement-related cortical potentials preceding wrist extension in humans, Neuroreport, Vol.12, No.10, pp.2221-2225(2001).
- [21] Taylor M. J.: Bereitschaftspontential during the acquisition of a skilled motor task, Electroencephalogr Clin Neurophysiol, Vol.45, No.5, pp.568-576(1978).
- [22] Wright D. J., Holmes P., Di Russo F., Loporto M., Smith D.: Reduced motor cortex activity during movement preparation following a period of motor skill practice, PLoS One, Vol.7, No.12, pp.e51886(2012).
- [23] Jochumsen M., Rovsing C., Rovsing H., Cremoux S., Signal N., Allen K., Taylor D., Niazi I. K.: Quantification of Movement-Related EEG Correlates Associated with Motor Training: A Study on Movement-Related Cortical Potentials and Sensorimotor Rhythms, Front Hum Neurosci, Vol.11, pp.604(2017).
- [24] Schandry R., Sparrer B., Weitkunat R.: From the heart to the brain: a study of heartbeat contingent scalp potentials, Int J Neurosci, Vol.30, No.4, pp.261-275(1986).
- [25] Petzschner F. H., Weber L. A., Wellstein K. V., Paolini G., Do C. T., Stephan K. E.: Focus of attention modulates the heartbeat evoked potential, Neuroimage, Vol.186, pp.595-606(2019).
- [26] Park H. D., Blanke O.: Heartbeat-evoked cortical responses: Underlying mechanisms, functional roles, and methodological considerations, Neuroimage, Vol.197, pp.502-511(2019).
- [27] Craig A. D.: Interoception: the sense of the physiological condition of the body, Curr Opin Neurobiol, Vol.13, No.4, pp.500-505(2003).
- [28] Craig A. D.: How do you feel-now? The anterior insula and human awareness, Nat Rev Neurosci, Vol.10, No.1, pp.59-70(2009).
- [29] Kern M., Aertsen A., Schulze-Bonhage A., Ball T.: Heart cyclerelated effects on event-related potentials, spectral power changes, and connectivity patterns in the human ECoG, Neuroimage, Vol.81, pp.178-190(2013).
- [30] Park H. D., Bernasconi F., Salomon R., Tallon-Baudry C., Spinelli L., Seeck M., Schaller K., Blanke O.: Neural Sources and Underlying Mechanisms of Neural Responses to Heartbeats, and their Role in Bodily Self-consciousness: An Intracranial EEG Study, Cereb Cortex, Vol.28, No.7, pp.2351-2364(2018).
- [31] Montoya P., Schandry R., Muller A.: Heartbeat evoked potentials (HEP): topography and influence of cardiac awareness and focus of attention, Electroencephalogr Clin Neurophysiol, Vol.88, No.3, pp.163-172(1993).
- [32] Schandry R., Montoya P.: Event-related brain potentials and the processing of cardiac activity, Biol Psychol, Vol.42, No.1-2, pp.75-85(1996).
- [33] Pollatos O., Schandry R.: Accuracy of heartbeat perception is reflected in the amplitude of the heartbeat-evoked brain potential, Psychophysiology, Vol.41, No.3, pp.476-482(2004).
- [34] Luft C. D., Bhattacharya J.: Aroused with heart: Modulation of heartbeat evoked potential by arousal induction and its oscillatory correlates, Sci Rep, Vol.5, pp.15717(2015).
- [35] Kim J., Park H. D., Kim K. W., Shin D. W., Lim S., Kwon H., Kim M. Y., Kim K., Jeong B.: Sad faces increase the heartbeat-associated interoceptive information flow within the salience network: a MEG study, Sci Rep, Vol.9, No.1, pp.430(2019).
- [36] Couto B., Adolfi F., Velasquez M., Mesow M., Feinstein J., Canales-Johnson A., Mikulan E., Martinez-Pernia D., Bekinschtein T., Sigman M., Manes F., Ibanez A.: Heart evoked potential triggers brain responses to natural affective scenes: A preliminary study, Auton Neurosci, Vol.193, pp.132-137(2015).
- [37] Khoshnoud S., Alvarez Igarzabal F., Wittmann M.: Brain-Heart Interaction and the Experience of Flow While Playing a Video Game, Front Hum Neurosci, Vol.16, pp.819834(2022).
- [38] Smith N. J., Kutas M.: Regression-based estimation of ERP waveforms: I. The rERP framework, Psychophysiology, Vol.52, No.2, pp.157-168(2015).
- [39] Yokota Y., Naruse Y.: Temporal Fluctuation of Mood in Gaming Task Modulates Feedback Negativity: EEG Study With Virtual Reality, Front. Hum. Neurosci., Vol.15, pp.536288(2021).
- [40] Akaike H.: Information Theory and an Extension of the Maximum Likelihood Principle, Proceedings of the 2nd International Symposium on Information Theory, pp.267-281(1998).