電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトウェア・情報処理>
Simple PCAを用いたベクトル空間情報検索モデルの次元削減
黒岩 眞吾柘植 覚獅々堀 正幹任 福継北 研二
著者情報
ジャーナル フリー

2005 年 125 巻 11 号 p. 1773-1779

詳細
抄録
In this paper, we propose to use the Simple Principal Component Analysis (SPCA) for dimensionality reduction of the vector space information retrieval model. The SPCA algorithm is a data-oriented fast method which does not require the computation of the variance-covariance matrix. In SPCA, principal components are estimated iteratively so we also propose a criteria to determine the convergence. The optimum number of iterations for each principal component can be determined using the criteria. Experimentally, we show that the SPCA-based method offers improvement over the conventional SVD-based method despite its small amount of computation. This advantage of SPCA can be attributed to its iterative procedure which is similar to clustering methods such as k-means clustering. On the other hand, the proposed method which orthogonalizes the basis vectors also achieved much higher accuracy than the conventional random projection method based on k-means clustering.
著者関連情報
© 電気学会 2005
前の記事 次の記事
feedback
Top