電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトウェア・情報処理>
重みを用いた距離関数の結合によるテキスト分類
山田 貴大石井 直宏中島 豊四郎
著者情報
ジャーナル フリー

2007 年 127 巻 12 号 p. 2077-2085

詳細
抄録
The text classification is an important subject in the data mining. For the text classification, several methods have been developed up to now, as the nearest neighbor analysis, the latent semantic analysis, etc. The k-nearest neighbor (kNN) classification is a well-known simple and effective method for the classification of data in many domains. In the use of the kNN, the distance function is important to measure the distance and the similarity between data. To improve the performance of the classifier by the kNN, a new approach to combine multiple distance functions is proposed here. The weighting factors of elements in the distance function, are computed by GA for the effectiveness of the measurement. Further, an ensemble processing was developed for the improvement of the classification accuracy. Finally, it is shown by experiments that the methods, developed here, are effective in the text classification.
著者関連情報
© 電気学会 2007
前の記事 次の記事
feedback
Top