電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<音声画像処理・認識>
教師ありSOMを用いた紙幣音響特徴に基づく疲弊度推定
寺西 大大松 繁小坂 利壽
著者情報
ジャーナル フリー

2008 年 128 巻 12 号 p. 1804-1810

詳細
抄録
Fatigued bills have harmful influence on daily operation of Automated Teller Machine(ATM). To make the fatigued bills classification more efficient, development of an automatic fatigued bill classification method is desired. We propose a new method to estimate bending rigidity of bill from acoustic signal feature of banking machines. The estimated bending rigidities are used as continuous fatigue level for classification of fatigued bill. By using the supervised Self-Organizing Map(supervised SOM), we estimate the bending rigidity from only the acoustic energy pattern effectively. The experimental result with real bill samples shows the effectiveness of the proposed method.
著者関連情報
© 電気学会 2008
前の記事 次の記事
feedback
Top