電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
Grid-World迷路問題においてマクロアクション生成機能を有する強化学習モデルとその学習特性に関する考察
恩田 宏小澤 誠一
著者情報
ジャーナル フリー

2009 年 129 巻 4 号 p. 735-743

詳細
抄録
A macro-action is a typical series of useful actions that brings high expected rewards to an agent. Murata et al. have proposed an Actor-Critic model which can generate macro-actions automatically based on the information on state values and visiting frequency of states. However, their model has not assumed that generated macro-actions are utilized for leaning different tasks. In this paper, we extend the Murata's model such that generated macro-actions can help an agent learn an optimal policy quickly in multi-task Grid-World (MTGW) maze problems. The proposed model is applied to two MTGW problems, each of which consists of six different maze tasks. From the experimental results, it is concluded that the proposed model could speed up learning if macro-actions are generated in the so-called correlated regions.
著者関連情報
© 電気学会 2009
前の記事 次の記事
feedback
Top