電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<生体医工学・福祉工学>
ANNを用いた透析シャント音による狭窄診断支援システムの要素研究
鈴木 裕深澤 瑞也森 鷹浩阪田 治服部 遊加藤 隆也
著者情報
ジャーナル フリー

2010 年 130 巻 3 号 p. 401-406

詳細
抄録
It is desired to detect stenosis at an early stage to use hemodailysis shunt for longer time. Stethoscope auscultation of vascular murmurs is useful noninvasive diagnostic approach, but an experienced expert operator is necessary. Some experts often say that the high-pitch murmurs exist if the shunt becomes stenosed, and some studies report that there are some features detected at high frequency by time-frequency analysis. However, some of the murmurs are difficult to detect, and the final judgment is difficult. This study proposes a new diagnosis support system to screen stenosis by using vascular murmurs. The system is performed using artificial neural networks (ANN) with the analyzed frequency data by maximum entropy method (MEM). The author recorded vascular murmurs both before percutaneous transluminal angioplasty (PTA) and after. Examining the MEM spectral characteristics of the high-pitch stenosis murmurs, three features could be classified, which covered 85 percent of stenosis vascular murmurs. The features were learnt by the ANN, and judged. As a result, a percentage of judging the classified stenosis murmurs was 100%, and that of normal was 86%.
著者関連情報
© 電気学会 2010
前の記事 次の記事
feedback
Top