抄録
Autonomic nervous system is important in maintaining homeostasis by the opposing effects of sympathetic and parasympathetic nervous activity on organs. However, it is known that they are at times simultaneously increased or decreased in cases of strong fear or depression. Therefore, it is required to evaluate sympathetic and parasympathetic nervous activity independently. In this paper, we propose a method to evaluate sympathetic nervous activity by analyzing the decreases in blood pressure by utilizing the Windkessel model. Experiments are performed in sitting and standing positions for 380 s, respectively. First, we evaluate the effects of length for analysis on the Windkessel time constant. We shorten the length for analysis by multiplying constant coefficients (1.0, 0.9, and 0.8) to the length of blood pressure decrease and then cut-out the waveform for analysis. Then it is found that the Windkessel time constant is decreased as the length for analysis is shortened. This indicates that the length for analysis should be matched when the different experiments are compared. Second, we compare the Windkessel time constant of sitting to that of standing by matching their length for analysis. With statistically significant difference (P<0.05) the results indicate that the Windkessel time constant is larger in the sitting position. Through our observations this difference in the Windkessel time constant is caused by sympathetic nervous activity on vascular smooth muscle.