電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
複属性データ対応型自己組織化マップを用いた脳波分析に関する一考察
伊藤 伸一伊藤 桃代福見 稔
著者情報
ジャーナル フリー

2017 年 137 巻 2 号 p. 302-309

詳細
抄録

This paper discusses a method to detect electroencephalogram (EEG) patterns using a self-organizing map (SOM) based on a learning algorithm for plural-attribute information (SOMPA). The input data for SOMPA has two attributes which are EEG feature and individual feature. We set the EEG feature to main feature and individual feature to sub-attribute information. The winning node in the learning algorithm of SOMPA is determined by using main feature and sub-attribute information. In the preprocessing, we extract the EEG feature vector by calculating the time average on each frequency band which are θ, α and β, respectively. The individual feature is analyzed though the ego analysis using psychological testing. In order to prove the effectiveness of the proposed method, we conduct experiments using real EEG data. The experimental results show that the EEG pattern detection accuracy using SOMPA improves compared with the standard SOM.

著者関連情報
© 2017 電気学会
前の記事 次の記事
feedback
Top