電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<生体医工学・福祉工学>
ナノレベル構造化基板上で培養したヒト間葉系幹細胞の形態と分化
山﨑 雅史小島 弘暉三好 洋美
著者情報
ジャーナル 認証あり

2020 年 140 巻 4 号 p. 432-436

詳細
抄録

Mesenchymal stem cell (MSC) is known to show responsiveness to the physical properties, such as stiffness and nano- to micro-structures, of the extracellular environment. However, the signaling mechanism has not been fully elucidated yet. Here, the effects of nano-scale pillar arrays of the cell culture substrate on morphology and differentiation were evaluated in human MSC to understand the signaling mechanism in regulation of differentiation in response to the nano-scale structures. Human MSCs were cultured on a quartz substrate with the three types of pillar-arrays with 200 nm in side length, 150 nm in height, and different center-to-center spacings (300 nm, 400 nm, 700 nm) in a cell culture medium with no differentiation induction regent. The cells were well spread, and about half of the cells showed osteogenic differentiation on the flat region of the substrate. The spreading and the osteogenic differentiation were suppressed in the cells on the pillar-arrayed region regardless of the pillar spacing. This provided insight that the human MSCs spontaneously differentiate into the osteoblast in response to the stiff substrate with no structure, and the suppression of the cell spreading caused by the nano-scale structures can downregulate the progress of the osteogenic differentiation.

著者関連情報
© 2020 電気学会
前の記事 次の記事
feedback
Top