電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<ソフトコンピューティング・学習>
異種データを生成する敵対的生成ネットワーク
室田 真吾飯間 等
著者情報
ジャーナル 認証あり

2022 年 142 巻 7 号 p. 781-787

詳細
抄録

A generative adversarial network (GAN) is one of the popular deep generative models. It generates new data similar to the data of a dataset but is not intended to generate different data from them. In this paper, we propose a GAN that generates such different types of data, which a user desires to obtain. In the proposed method, some data of the dataset are iteratively exchanged for ones generated by the generator if the generated data are more helpful in generating the user's desirable ones. The performance of the proposed method is evaluated by comparing it with some other GANs.

著者関連情報
© 2022 電気学会
前の記事 次の記事
feedback
Top