電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<情報処理・ソフトウェア>
人工検査画像を用いた外観検査DNNの特徴空間解釈
渡辺 康生三好 健斗青木 公也輿水 大和菊地 朝子畔蒜 一輝
著者情報
ジャーナル 認証あり

2023 年 143 巻 11 号 p. 1073-1082

詳細
抄録

In this study, we propose a method to clarify the application limits of DNN (Deep Neural Network) based visual inspection systems. A process for determining inspection results is a black box because DNN automatically extracts features. However, visual inspection requires judgment based on specifications. The problem is that the basis for the decision is unclear. To address this problem, we interpret the feature space of DNN using known features. Firstly, it generates data with explicit knowledge characteristics (for example, defect length, area, shading depth etc.) that can be arbitrarily modified. Secondary, the generated data are input to trained DNN models and observed the coordinate changes caused by their explicit knowledge characteristics in the feature space. Preliminary experiments on the MNIST dataset (public dataset) confirm that the DNN feature space is able to represent quantitative feature variation. Experiments using actual inspection images also confirmed the effectiveness of the proposed method.

著者関連情報
© 2023 電気学会
前の記事 次の記事
feedback
Top