電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<音声画像処理・認識>
CycleGANにより得られた画像を用いた塗装不良の検出
杉山 颯汰相川 直幸
著者情報
ジャーナル 認証あり

2024 年 144 巻 2 号 p. 80-81

詳細
抄録

In recent years, defect detection and classification using machine learning as an alternative to visual inspection has been studied. In this paper, we propose a method for defect detection by taking the difference between pseudo-images generated using CycleGAN and the original images. Compared to the conventional detection method using binarization, our proposed method can detect defects independent of the shooting environment, thus significantly reducing the risk of overlooking defects.

著者関連情報
© 2024 電気学会
前の記事 次の記事
feedback
Top