電気学会論文誌C(電子・情報・システム部門誌)
Online ISSN : 1348-8155
Print ISSN : 0385-4221
ISSN-L : 0385-4221
<生体医工学・福祉工学>
CNNおよびVision Transformerによる視線方向識別の比較
新倉 大希阿部 清彦
著者情報
ジャーナル 認証あり

2024 年 144 巻 7 号 p. 683-684

詳細
抄録

We propose an eye-gaze input system that utilizes a laptop PC and its inner camera. This system can discriminate the user’s eye-gaze direction by using Convolutional Neural Network (CNN) or Vision Transformer (ViT). In this paper, we present the results of a comparison of the newly created eye-gaze direction discrimination model of ViT and the past model created by a CNN. We evaluated the accuracy of discrimination models created by ViT and CNN through the experiments. As a result, the ViT model has higher accuracy than the CNN model in discriminating the center direction.

著者関連情報
© 2024 電気学会
前の記事 次の記事
feedback
Top